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Abstract

Especially in microsystem design, maintaining the minimum thickness of each structural member at a certain scale is
often as important as achieving the maximum system performance. Several successful methods to suppress one-point
hinges or checkerboards in topology optimization have been developed, but an efficient method to control the minimum
thickness at a desire scale remains to be developed. The objective of this investigation is to develop a wavelet-based
minimum thickness controlling method applicable to topology optimization and to show the effectiveness of the pro-
posed method in MEMS design. The idea behind the thickness controlling method is to extend the wavelet shrinkage
method developed for one-point hinge control to any scale-level minimum thickness control. The major difficulties in
implementing this idea are the development of an efficient algorithm to detect all undesirable patterns of different scales
and the hierarchical application of the wavelet shrinkage method over multiple scales. Some techniques to overcome
these difficulties are developed and applied to some MEMS design problems.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In most engineering design, not only system performance but also manufacturing cost is impor-
tant. Based on an observation that the minimum member-thickness issue is a primary factor affecting
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manufacturing cost, we investigate the minimum thickness controlling scheme for topology optimization.
The specific application in consideration is MEMS design.

1.1. Thickness-related issue in MEMS design

Especially in MEMS design, some processing techniques cannot handle structures whose aspect ratios
are higher than certain values or structures whose member sizes are smaller than certain scales (see Jons-
mann, 1999; Bertz et al., 2002; Ayazi and Najafi, 2002; Elwenspoek and Wiegerink, 2001).

To address the thickness issue in MEMS design, we actually manufactured an electro-thermal-compliant
actuator in Fig. 1(a) that was optimized by topology optimization. For the design in Fig. 1, no minimum
member size control was considered. During actuation tests, only a few percentages of the manufactured
actuators survived. A typical failure is illustrated in Fig. 1(d) and it is found that the failure occurred where
the member was very thin. This observation has called for the consideration of not only system perfor-
mance but also minimum member control during the topology optimization of the actuator.

1.2. Scale and minimum thickness in topology optimization

Let us now consider how the minimum thickness issue or the scale issue has been addressed in topology
optimization. To address this issue, three patterns of structural connectivity shown in Fig. 2 are considered.
Fig. 2(a) shows a well-known one-point hinge connection. If the one-point hinge connections are repeated,
the resulting pattern becomes a so-called checkerboard pattern. For subsequent discussion, the one-point
hinge connection will be referred to as the connection of thickness 0 (CT0). When CT0 appears as the result
of optimization, one may have to replace CT0 as the connections having thickness of 1 (CT1) or 2 (CT2) to
avoid failures such as the one shown in Fig. 1(d). Connection CT1 and CT2 are illustrated in Fig. 2(b) and
(c). In our discussion, the symbol CTn (n: positive integer) is used to denote a connection of thickness n
where the finite element used for analysis is assumed to be square.

When systems to be optimized are in microscales, CTn may need to be replaced by CT(n + 1) or
CT(n + 2). Quite often, this replacement deteriorates the systems performance substantially (see e.g., Jons-
mann, 1999). To avoid the excessive system performance drop due to the postprocessed thickening, the
Fig. 1. Optimization and fabrication of an electro-thermal-compliant actuator. (a) A direct numerical result by the topology
optimization without any control on the minimum member size, (b) postprocessed result of (a), (c) a successfully fabricated actuator by
the MEMS technology, (d) a failed actuator during the fabrication.



Fig. 2. Various element connections. (a) CT0 (connection of thickness 0), (b) CT1 (connection of thickness 1), (c) CT2 (connection of
thickness 2).
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minimum size of the structural connection should be taken into account in the topology optimization
process.

The interest in the size issue in topology optimization goes back to Harber et al. (1996) who developed
the perimeter controlling method. A method to constrain slopes-constrained optimization was also devel-
oped by Petersson and Sigmund (1998). The minimum length-scale imposing scheme was developed by
Zhou et al. (2001) and the length control over a few scale levels was proposed by Poulsen (2003). However,
he treated the minimum thickness as the constraint equation.

The objective of this investigation is twofold: to develop an efficient wavelet-based method to impose the
minimum connection thickness at various scale levels and to apply the method to the design of MEMS,
such as microelectro-thermal-compliant actuators, where the minimum thickness control is one of critical
issues. The optimization formulations for the design problems considered in this work were given by Sig-
mund (2001) and Ananthasuresh et al. (1994), but the minimum thickness control was not considered in
their investigations.

The wavelet-based method developed in this work restricts the design space by the hierarchical applica-
tion of non-redundant translation-invariant wavelet shrinkage operations. Unlike Poulsen�s method (2003),
the wavelet-based method does not treat the minimum thickness control as extra constraint equations. Fur-
thermore, the patterns to be controlled can be defined more easily in the wavelet space than in the direct
density space. This design space restriction method by the wavelet shrinkage was developed earlier by Yoon
et al. (2004) in which only CT0�s, that is, only the one-point hinge connection and checkerboard patterns
were controlled.

Since the objective of the present investigation is to eliminate all patterns from CT0 to CTn (n = 1,2, . . .),
wavelet shrinkage operations must be applied hierarchically over several scales. The key step in the devel-
opment of the hierarchical wavelet shrinkage is to establish the correct condition to suppress CTn over mul-
tiple scales. To this end, the patches representing the patterns to be deleted should be declared and a robust
hierarchical pattern detection algorithm must be developed. Typical pattern detection algorithms usually
employ the logical statements such as ‘‘IF,’’ ‘‘OR,’’ and ‘‘NOT,’’ but they should be made differentiable
if one wishes to use them within efficient gradient-based optimizers. Thus, a method to replace all the logi-
cal operations by approximate differentiable logical operations is developed by extending the idea suggested
in Yoon et al. (2004). A hierarchical wavelet shrinkage method is then developed by applying the differen-
tiable operators over multiple scales.

As application problems, two MEMS design problems were considered: the design of thermal actuators
and the design of electro-thermal-compliant actuators. These problems were studied earlier, but perhaps the
present investigation is the first effort to apply the minimum thickness controlling scheme to these prob-
lems. We also addressed how optimized design configurations as well as the system performance are affected
by the minimum thickness control. We confirmed the effectiveness of the minimum thickness controlling
method in the design of an electro-thermal-compliant actuator where some candidate designs were actually
fabricated by the MEMS processing technology.
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2. Wavelet-based topology optimization method

2.1. Topology optimization

In case of structure-involving topology optimization problems, one can set up the following minimiza-
tion problem:
minimize U ¼ UðU; qÞ

subject to HðqÞ ¼
XNE
e¼1

qeve �M0 6 0 ðM0: Mass limitÞ ð1Þ

KU ¼ F ðEquilibrium equationÞ
e 6 q 6 1 ðe: small numberÞ
where U is the displacement and q are the density design variables defined on finite elements. The number of
elements and the element volume are denoted by NE and ve, respectively. The symbols K and F are the stiff-
ness matrix and the load vector, respectively. In the SIMP (Solid Isotropic Material with Penalization)
method, the material properties are interpolated as some functions of the density variables. The problem
in Eq. (1) is usually solved by mathematical programming. The objective function U can be defined for
a given design problem (see Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund, 2003).

2.2. Topology optimization in the wavelet design space

In the conventional topology optimization method explained above, a design variable represents the
relative density value of a single finite element. However, it would be possible to define a set of design
variables that are defined over a different number of finite elements. Namely, the design variables can be
expressed in multiple scales. This idea has been used in Kim and Yoon (2000), Poulsen (2002), Yoon
et al. (2004), Seo and Kim (2005) and Yoon and Kim (2005). The wavelet method has been called the wave-
let-based multiscale topology optimization because wavelets are used for the multiscale transformation.

To compare the single-scale and multiscale representations, consider Fig. 3 showing a design domain dis-
cretized by 8 · 8 mesh. In the usual single-scale setting, 64 single-scaled functions are used to represent the
design variables assigned to 64 finite elements, as illustrated in Fig. 3(a). On the other hand, the 64 design
variables can also be represented by another set of 64 functions having different support scales as shown in
Fig. 3(b). The functions shown in Fig. 3(b) may be referred to as the so-called non-standard two-dimen-
sional Haar wavelets (see Stollnitz et al., 1996).

To avoid the complexity in the multiscale design space resulting from the side constraint imposed on the
original density variables, the density design variables q are transformed to auxiliary variables n which are
then transformed to the wavelet variables W by the non-standard Haar wavelet transform T (see Mallat,
1998). These transformations may be written symbolically as
q ¼ 1

1þ ern
; �1 6 n 6 1 ðsay; r ¼ �0.3Þ ð2Þ

W ¼ Tn ð3Þ

where the symbol W and n stand for the vectors consisting of the wavelet variables and the auxiliary vari-
ables respectively. See Seo and Kim (2005) for the matrix description of the wavelet transformation T.
(Note that the upper-case symbol W is used to represent the one-dimensional array W in Seo and Kim
(2005).) Fig. 4 schematically describes the mapping procedure from the density variables to the wavelet
variables for a density region or a patch consisting of 2 · 2 finite elements.



Fig. 3. (a) Single-scale representation, (b) multiscale representation by the non-standard Haar wavelets (Black: Positive; Gray:
Negative; White: 0).
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For the case described in Fig. 4, the relation between ni and wi can be written as
Fig. 4
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After this transformation, the topology optimization of Eq. (1) in the wavelet space is redefined as:
.

minimize U ¼ UðU;WÞ

subject to HðWÞ ¼
XNE
e¼1

qeve �M0 6 0 ðM0: Mass limitÞ ð5Þ
Then the sensitivities of U and H with respect to W becomes (see also Seo and Kim, 2005)
dU
dW

¼ dn
dW

� dq
dn

� dU
dq

¼ T � dq
dn

� dU
dq

ð6Þ
The schematic procedure for the wavelet shrinkage applied to the wavelet variables W that are mapped from the density
les q.
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dH
dW

¼ dn
dW

� dq
dn

� dH
dq

¼ T � dq
dn

� dH
dq

ð7Þ
where
dq

dn
¼ � rern

ð1þ ernÞ2
ð8Þ
2.3. Hinge-free design optimization using the multiscale topology optimization

Now, a wavelet-shrinkage method developed for one-point hinge control (Yoon et al., 2004) will be ex-
plained as this method is used as a building block for minimum member thickness control.

2.3.1. Wavelet shrinkage to eliminate CT0 from the W space

If a 2 · 2 patch in Fig. 4 is detected as a hinge pattern (CT0), the wavelet variables W are shrunk or
modified to eliminate CT0�s. The operating shrinkingW to CT0-free variables, R in Fig. 4 may be described
by an operation sh:
r1 ¼ w1 ðno shrinkageÞ
r2 ¼ shðw2;w3;w4Þw2

r3 ¼ shðw2;w3;w4Þw3

r4 ¼ shðw2;w3;w4Þw4

ð9Þ
where
shðw2;w3;w4Þ ¼
0 if the patch is a hinge

1 else

�
ð10Þ
Since the detailed explanation on the shrinkage operation sh has been given in Yoon et al. (2004), it will
not be repeated. However, it is emphasized that the shrinkage operation to suppress CT0 patterns is rep-
resented easily with the wavelet variables wi.
2.3.2. Non-redundant translation-invariant shrinkage

The wavelet transform at the shortest-scale level applies to patches consisting of 2 · 2 elements, which
are translations of each other by two elements in the horizontal, vertical and diagonal directions. For in-
stance, the two-dimensional Haar wavelets representing the diagonal differences may be illustrated as those
shown in Fig. 5.

If the wavelets shown in Fig. 5 are used for hinge detection, the patterns shown in Fig. 6 and their trans-
lations by even numbers of elements in the horizontal, vertical, or diagonal directions may not be captured
by the shrinkage algorithm described earlier. Therefore, the non-redundant translation-invariant wavelet
shrinkage algorithm has been developed in order to search all possible hinge patterns.

Fig. 7 schematically compares the standard single-scale approach and the wavelet approaches. In

Fig. 7(c), the symbol S
0

D denotes the non-redundant translation-invariant operation, the wavelet shrinkage
operation developed for the control of CT0 patterns. The meaning of several notations in S

0

D: such as
the superscript 0 will be explained in the next section where more general shrinkage operation S are
developed.
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Fig. 5. The illustration of the two-dimensional Haar wavelets representing the shortest-scale diagonal differences.

Fig. 6. Translations of the patches in Fig. 5.
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3. The development of the hierarchical wavelet shrinkage method for various minimum thickness controls

In this section, a wavelet shrinkage method by Yoon et al. (2004) will be generalized for CT0 control for
the control of CTn patterns with n P 1. The proposed CTn (n P 1) controlling scheme is depicted in Fig. 8.
In Fig. 8, more than one shrinkage operation S appear since multiple patterns at different scale (i.e., CT0,
CT1, and CT2) are to be controlled. Because the shrinkage operations should be applied over scales, the
method described in Fig. 8 will be called the hierarchical wavelet shrinkage method. Meanwhile, controlling
CTn patterns for multiple n values necessitates the use of a logical operator ‘‘AND’’ but this logical oper-
ator is not suitable for a gradient-based optimizer. Therefore, we must develop a scheme to make the
‘‘AND’’ operator differentiable (at least approximately).

In this section, the following schemes are developed to implement the hierarchical wavelet-shrinkage
method:

• Pattern detection algorithm using wavelet coefficients
• Hierarchical shrinkage method
• Differentiable version of the logical operator, ‘‘AND’’



Fig. 7. Flow charts for various topology optimization schemes. (a) Standard topology optimization, (b) multiscale topology
optimization, and (c) the wavelet-shrinkage multiscale topology optimization for hinge-free designs. (Note that the wavelet space,W, is
shrunk by the shrinkage operator S

0

D for the reduced space R. The shrinkage operators, including S
0

D, will be explained in the next
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3.1. Patterns thickness

When a square patch is examined for thickness control, it is convenient to introduce the notion of
patch lengths. The minimum diagonal length of the solid part of a square will be defined as Ld

min whereas

section.)



Fig. 8. An overview of the hierarchical wavelet shrinkage method developed to keep the minimum structural connection at CT4.
(The meaning of the shrinkage operators, S

0

D;H;V, S
1

D, and etc., is given in Section 3.2.)

G.H. Yoon et al. / International Journal of Solids and Structures 42 (2005) 5945–5970 5953
the minimum of the horizontal or vertical length of the solid part will be defined as Lh;v
min. As an example,

consider a 2 · 2 patch shown in Fig. 9.
In this case,
Ld
min ¼

ffiffiffi
2

p
ð11Þ

Lh;v
min ¼ 1 ð12Þ
θ

1

1

L(θ)

Fig. 9. An example of a 2 · 2 square patch.
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If the minimum connection is set as CT1, then Ld
min and Lh;v

min of all possible 2 · 2 patches within the design
domain must satisfy
Ld
min P

ffiffiffi
2

p
and Lh;v

min P 1 ð13Þ

If the minimum connection is set as CT2, the following conditions must be satisfied simultaneously:
for all 4	 4 patches : Ld
min P 2

ffiffiffi
2

p
and Lh;v

min P 2 ð14Þ

and
for all 2	 2 patches : Ld
min P

ffiffiffi
2

p
and Lh;v

min P 1 ð15Þ

For future use, the condition for the minimum connection to be CTn with n = 4 is also stated:
for all 8	 8 patches : Ld
min P n

ffiffiffi
2

p
and Lh;v

min P n ð16Þ

for all 4	 4 patches : Ld
min P

n
ffiffiffi
2

p

2
and Lh;v

min P
n
2

ð17Þ
and
for all 2	 2 patches : Ld
min P

n
ffiffiffi
2

p

4
and Lh;v

min P
n
4

ð18Þ
For CTn (n P 5), conditions similar to Eqs. (16)–(18) can be used.
Fig. 10. Patterns to be checked and controlled.
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To bring the notion of the minimum structural connection to our attention, let us consider patterns in
Fig. 10. If the minimum structural connection is set as CT1, the pattern shown in Fig. 10(a) will be checked
and suppressed. When the minimum structural connection is set as CT2, the patterns in Fig. 10(b) must be
controlled. In addition, the pattern in Fig. 10(a) should be also controlled.

Imposing the minimum structural connection at CT2 and CTn (n P 3) is not so easy because the finite
element discretization resolution is not the same as the resolution of the controlled pattern. Let us consider
the case of Fig. 10(b-1) where the resolution of the hinge pattern is lower than the resolution of the finite
element discretization. One may simply suppress the hinge pattern of Fig. 10(b-1) in order to impose the
minimum structural connection at CT2. Due to inevitable numerical errors occurring during the shrinkage
and optimization process, however, patterns belonging to CT1 such as Fig. 10(b-2) and (b-3) cannot be
completely suppressed. The reason for this phenomenon will be given in the subsequent discussion along
with a method to control the minimum thickness at a desired scale. For future reference, the pattern in
Fig. 10(b-2) and (b-3) will be referred to as the horizontal jump pattern and the vertical jump pattern,
respectively.

3.2. Pattern detection algorithm in the wavelet space

In order to control patterns in the wavelet space, a pattern detection algorithm should be expressed in
terms of wavelet variables. Let us begin with considering square patches defined in the space of n, as illus-
trated in Fig. 11.

The superscript j in nj
i in Fig. 11 denotes the resolution level and the variable d is introduced to represent

the difference between two adjacent variables nj
i :

Local horizontal differences:
dj
1 ¼ nj

1 � nj
2 ¼ wj

4 � wj
2

dj
3 ¼ nj

4 � nj
3 ¼ wj

2 þ wj
4

ð19Þ
Local vertical differences:
dj
2 ¼ nj

2 � nj
4 ¼ �wj

3 � wj
4

dj
4 ¼ nj

3 � nj
1 ¼ wj

3 � wj
4

ð20Þ
Note that all dj
i variables can be written compactly in terms of the wavelet variables wj

i at any resolution
level. Based on the variables dj

i , the following criteria are proposed to identify patterns of Fig. 10(a), (b-2),
and (b-3):
Criterion I : ðdi
1Þ

2 þ ðdi
2Þ

2 þ ðdi
3Þ

2 þ ðdi
4Þ

2
< e ð21Þ

Criterion II : di
1 	 di

2 P 0 or di
2 	 di

3 P 0 or di
3 	 di

4 P 0 or di
4 	 di

1 P 0 ð22Þ

Criterion III : ðdi
2Þ

2 þ ðdi
4Þ

2
> Dupper and ðdi

1Þ
2 þ ðdi

3Þ
2
< Dlower ð23Þ

Criterion IV : ðdi
2Þ

2 þ ðdi
4Þ

2
< Dlower and ðdi

1Þ
2 þ ðdi

3Þ
2
> Dupper ð24Þ
(Typical values of e, Dlower, Dupper: e = 144, Dlower = 25, Dupper = 800).
Criterion I and II have been used in Yoon et al. (2004) and Criterion III and IV are newly introduced

here. Criterion I checks any appreciable pattern variation, and Criterion II checks the monotonousness of a
square patch. Therefore, if a square patch is a hinge pattern, neither Criterion I nor II is satisfied. Similarly,
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Fig. 11. Square patches at various resolution levels. (The lowest resolution level is level 0.)
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since ðdi
1Þ

2 þ ðdi
3Þ

2 and ðdi
2Þ

2 þ ðdi
4Þ

2 quantify the horizontal difference and the vertical difference, respec-
tively, Criterion III and IV can be used to detect the vertical and horizontal jump patterns, respectively.
The proposed pattern detection algorithm is summarized in Box 1.
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Box 1. Basic pattern detection algorithm applied to a square patch P j discretized by 2j+1 · 2j+1 elements.
If {fI < 0 or (f 1
II > 0 or f 2

II > 0 or f 3
II > 0 or f 4

II > 0)}
P j is not declared as P j

D. (P
j
D: Hinge Pattern)

If {f 1
III 6 0 and f 2

III P 0)
P j is declared as P j

V. (P
j
V : Vertical Jump Pattern)

If {f 1
IV 6 0 and f 1

IV P 0)
P j is declared as P j

H. (P
j
H: Horizontal Jump Pattern)

where

fI ¼ ðdi
1Þ

2 þ ðdi
2Þ

2 þ ðdi
3Þ

2 þ ðdi
4Þ

2 � e

f 1
II ¼ di

1 	 di
2; f 2

II ¼ di
2 	 di

3; f 3
II ¼ di

3 	 di
4; f 4

II ¼ di
4 	 di

1

f 1
III ¼ ðdi

1Þ
2 þ ðdi

3Þ
2 � Dlower; f 2

III ¼ ðdi
2Þ

2 þ ðdi
4Þ

2 � Dupper

f 3
IV ¼ ðdi

2Þ
2 þ ðdi

4Þ
2 � Dlower; f 4

IV ¼ ðdi
1Þ

2 þ ðdi
3Þ

2 � Dupper

with

di
1 ¼ wi

4 � wi
2; di

2 ¼ �wi
3 � wi

4; di
3 ¼ wi

2 þ wi
4; di

4 ¼ wi
3 � wi

4

In order to convey the underlying ideal of the algorithm in Box 1, let us consider the patches in Fig. 12.

Case 1: Hinge pattern detection by the algorithm in Box 1.
When the criterion of Eq. (21) is checked, the patch in Fig. 12(a) can be identified as a hinge pattern P 0

D.
F

q :
0.99753 0.00247

0.00247 0.99753

� �
! n :

20 �20

�20 20

� �

d0
1 ¼ 40; d0

2 ¼ �40; d0
3 ¼ 40; and d0

4 ¼ �40 ð25Þ

Since ðd0

1Þ
2 þ ðd0

2Þ
2 þ ðd0

3Þ
2 þ ðd0

4Þ
2 ¼ 6400 > e ¼ 144, P1 is declared as P 0

D.
Case 2: Vertical jump pattern.
When the Criterion III of Eq. (23) is satisfied, a patch in Fig. 12(b) and Eq. (26) can be categorized as a

vertical jump pattern P 0
V.
1P 2P 3P

0.99753 0.00247

0.997530.00247

0.99753 0.99753

0.00247 0.00247

0.99753

0.99753

0.00247

0.00247

0.99753

0.99753

0.00247

0.00247

(a)  (b) (c)

ig. 12. The simplest numerical examples. (a) Hinge pattern, (b) vertical jump pattern, and (c) horizontal jump pattern.



5958 G.H. Yoon et al. / International Journal of Solids and Structures 42 (2005) 5945–5970
q :
0.99753 0.99753

0.00247 0.00247

� �
! n :

20 20

�20 �20

� �

d0
1 ¼ 0; d0

2 ¼ 40; d0
3 ¼ 0; and d0

4 ¼ �40 ð26Þ

Since ðd0

2Þ
2 þ ðd0

4Þ
2 ¼ 3200 > Dupper and ðd0

1Þ
2 þ ðd0

3Þ
2 ¼ 0 < Dlower, P2 is declared as P 0

V.
Case 3: Horizontal jump pattern.
When the Criterion III of Eq. (24) is satisfied, the Patch in Fig. 12(c) and Eq. (27) can be identified as a

horizontal jump pattern P 0
H.
q :
0.99753 0.00247

0.99753 0.00247

� �
! n :

20 �20

20 �20

� �

d0
1 ¼ 40; d0

2 ¼ 0; d0
3 ¼ �40; and d0

4 ¼ 0 ð27Þ

Since ðd0

1Þ
2 þ ðd0

3Þ
2 ¼ 3200 > Dupper and ðd0

2Þ
2 þ ðd0

4Þ
2 ¼ 0 < Dlower, P3 is declared as P 0

H.

3.3. Hierarchical shrinkage method

To impose the minimum structural connection at CTn (n P 2), the shrinkage method based on the pat-
tern detection algorithm (Box 1) should be applied hierarchically. If the shrinkage operation is used to sup-
press CT0 patterns, the minimum connection will become CT1. If only CT0 patterns are to be suppressed,
only P 0

D patterns (in Fig. 13) need to checked, and thus the shrinkage operator S0
D representing Eqs. (9) and

(10) is used to restrict W as
CT1 : R ¼ S0
DW ð28Þ
In S0
D, the superscript 0 denotes the highest resolution level and the subscript D, the diagonal pattern,

i.e., the well-known hinge pattern. Therefore, all 2 · 2 patches at the highest resolution are checked and
the 2 · 2 hinge patterns are suppressed by the application of S0

D to W. Therefore, the original design space
is restricted to a design space free from CT0.

To clarify the role of the shrinkage operation, we will consider all possible patterns that can appear on
2 · 2 patches as illustrated in Fig. 13. There are 24 = 16 different patterns, but the application of the wavelet
shrinkage operation by Eq. (28) suppresses the formation of P 0

D (the finest diagonal patterns). Thus, 14 pat-
terns, out of 16 patterns, survive after the application of S0

D. (Though black pixels in Fig. 13 represent the
presence of solid material in that location, the actual state during optimization may be somewhere between
a solid state and a void state.)
Fig. 13. All possible 16 patterns that can be formed on 2 · 2 patches.
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To control the minimum structural connection at CT2 or CT4, the following hierarchical shrinkage
operations are proposed:
CT2 : R ¼ S0
D;H;VS

1
DW ð29Þ

CT4 : R ¼ S0
D;H;VS

1
D;H;VS

2
DW ð30Þ
To explain the hierarchical shrinkage operations in Eqs. (29) and (30), let us consider a typical patch P1

in a 4 · 4 design domain, which is shown in Fig. 14(a).
To make the minimum connection at CT2, P 1

D patterns (the diagonal patterns of level 1 of Fig. 14(b))
must be suppressed. One may eliminate P 1

D patterns just as P 0
D was eliminated, but some care must be taken

because the patch resolution is not the same as the resolution of the domain discretization. The difficulty in
imposing the minimum connection at CT2 may be demonstrated better by using the illustrations shown in
Fig. 15.

In Fig. 15(a), �n denotes a certain value of n. All four patterns (Q1 to Q4) in the top of Fig. 15(a) should be
eliminated from the design space to impose the minimum connection at CT2. However, only the first pat-
tern Q1 can be completely removed if P 1

D is suppressed. In order to show this phenomenon, each of the four
patterns is decomposed into the sum of two patterns in Fig. 15(a). As can be seen in Fig. 15(a), the rest
three patterns (Q2, Q3, Q4) still have additional patterns to be removed even after the elimination of the
low-resolution P 1

D pattern. Again, this phenomenon results from the difference in the patch resolution
and the discretization resolution. Therefore, if a P1 patch is declared as P 1

D, then its child patches, as defined
in Fig. 15(b), should not contain any of P 0

D (the hinge pattern), P 0
H (the horizontal jump pattern), or P 0

V (the
vertical jump pattern). Therefore, when P1 is declared as P 1

D, the shrinkage process must eliminate P 1
D. In

addition, the process must eliminate the child patterns P 0
D, P

0
H and P 0

V. This overall shrinkage process is
symbolized by S1

D.
Fig. 14. Illustration of various P1 patterns.



Fig. 15. Some patterns having the same P 1
D pattern at the lower patch resolution.
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Even after the application of the shrinkage operator S1
D, sometimes the minimum connection at a patch

interfacing two or more P 1
D-free patches does not belong to CT2. These typical situations are illustrated in

Fig. 16.
As shown in Fig. 16, not every P1 patch (4 · 4 patch) is P 1

D, but some connections may have scales
shorter than CT2. Since P 0

D, P
0
H, and P 0

V illustrated in Fig. 16 are not the child patches of P1, the suppression
of P 0

D, P
0
H, and P 0

V must be carried out in addition to the suppression of P 1
D. This additional operation

followed by the operation S1
D is denoted by S0

D;H;V in Eq. (29).
If the minimum structural connection is set as CT4, then the shrinkage operation stated as Eq. (30) will

be used. Because the shrinkage operation is achieved over multiple scales, from long-scale patterns to short-
scale patterns, the shrinkage operation is called hierarchical. The hierarchical shrinkage operation process
is summarized as Box 2.



Fig. 16. Some situations where P 0
D, P

0
H, or P

0
V appears even if P1 patches are P 1

D-free.
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Box 2. Hierarchical shrinkage algorithm.
CL = m of CTn (where n = 2m)
While (CL P 0)
{

if(CL = m)
shrink_ patterns=�D�
else
shrink_ patterns=�D, H, V�
Examine the entire design domain
{

Select ‘‘shrink_ patterns’’ using the algorithm in Box 1
Also select the child group index
Shrink the corresponding wavelet variables by Eqs. (28)–(30)
Also shrink the child wavelet variables if the mother patch is shrunk

}
Decrease CL by one

}

3.4. Differentiable hierarchical shrinkage operator

Because the shrinkage operations involve logical operators such as ‘‘AND and ‘‘OR’’ (see Box 1), the
operations cannot be directly incorporated into gradient-based optimizers. To overcome this difficulty, re-
laxed differentiable versions of logical operators should be developed by extending the idea used in Yoon
et al. (2004). This section is devoted to the development of approximate differentiable versions of all logical
statements.

Suppose that the following expressions are given with logical variables, A through E:
C ¼ A OR B ð31Þ

D ¼ A AND B ð32Þ

E ¼ NOT A ð33Þ

where
A ¼ EXP ¼ fAðxiÞ > 0 ð34Þ
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By definition, a logical variable A becomes 1 if EXP (EXP stands for an expression) is true, or zero
otherwise. In all cases, we assume that EXP is stated by greater-than inequalities.

Let a, b, c, d, and e be relaxed differentiable logical variables corresponding to A, B, C, D, and E. We
design ‘‘a’’ in such a way that it takes a value sufficiently close to 1 when fA is true, and a value sufficiently
close to zero when fA is not true. Furthermore, the logical variable ‘‘a’’ should be differentiable with respect
to any variable appearing in fA.

The key function to devise the relaxed differentiable versions of logical operations is the sigmoid func-
tion, LSF(x) having the following form:
Fig. 17
variab
y ¼ LSFðzÞ ¼ 1

1þ e�sz
¼

� 1 if z > 0

0.5 if z ¼ 0

� 0 if z < 0

8><
>: ðsay; s ¼ 300Þ ð35Þ
Unless the value of z is very close to 0, LSF(z) gives values very close to either 0 or 1.
By means of LSF, one may express a differentiable version of Eq. (34):
a ¼ LSFðfAðxiÞÞ ð36Þ

Note that any expression involving ‘‘IF’’ can be made differentiable by Eq. (36). By utilizing LSF again, one
can write the differentiable version of logical expressions involving ‘‘OR’’, ‘‘AND’’ and ‘‘NOT’’ as
The differentiable OR operator: c ¼ LSFðaþ b� dÞ ð37Þ

The differentiable AND operator: d ¼ LSFða � b� dÞ ð38Þ

The differentiable NOT operator: e ¼ 1� LSFðaÞ ð39Þ

where d is a shifting parameter. The value of d = 0.05 will be used unless stated otherwise. The behavior of
‘‘d’’ corresponding to D involving an ‘‘AND’’ operator is plotted in Fig. 17. The actual numerical values
for various combinations of (a,b) are given below.
c

. The behavior of the differentiable ‘‘c’’ of Eq.
les.
a

(31) involving an ‘‘AND’’ operator where
b

1.00000
 1.000
 1.000

3.05802 · 10�7
 1.000
 0.000

3.05802 · 10�7
 1.000
 0.000

3.05802 · 10�7
 0.000
 0.000
‘‘a’’ and ‘‘b’’ are differentiable logical
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To show the differentiability of the proposed logical variables, let us assume that fA and fB are functions

of two real variables x1 and x2. In this case, the differentiable logical variable ‘‘d,’’ for instance, also
becomes a function of x1 and x2 as
r01 ¼
r0i ¼
wh
shD

(fI,

r11 ¼
r1i ¼
wh

r0i ¼
wh

( fI
dðx1; x2Þ ¼ LSFðLSFðfAðx1; x2ÞÞ 	 LSFðfBðx1; x2ÞÞ � dÞ ð40Þ
It is obvious from Eq. (40) that the differentiation of ‘‘d’’ with respect to real variables xi can be obtained
in closed form. When the differentiable logical operations of Eqs. (35)–(39) are employed, the wavelet
shrinkage algorithm to impose the minimum connection at CT1 can be expressed as the algorithm in
Box 3. To impose the minimum connection at CT2, the hierarchical differentiable shrinkage algorithm pro-
posed in Box 4 can be used.

Box 3. Differentiable shrinkage algorithm to impose the minimum connection at CT1.
w0
1

shDðw0
2;w

0
3;w

0
4Þw0

i (i = 2,3,4)
ere
ðw0

2;w
0
3;w

0
4Þ ¼ 1� LSFð�c01 � c02 þ dÞ

c01 ¼ LSFð�fIÞ
c02 ¼ LSFð

P4
j¼1LSF ðf

j
IIÞ � dÞ

f j
II: defined in Box 1.)
If needed, the hierarchical shrinkage algorithm in Box 4 can be easily extended to impose the minimum
connection at any CTn. However, the scaling properties of the wavelet limits restrict n to be some power of
2 (i.e., n=1, 2, 4, 8, . . .).

Box 4. Hierarchical shrinkage algorithm to impose the minimum connection at CT2.
w1
1

shDðw1
2;w

1
3;w

1
4Þw1

i (i = 2,3,4)
ere
shDðw1

2;w
1
3;w

1
4Þ ¼ 1� LSFð�c11 � c12 þ dÞ

c11 ¼ LSFð�fIÞ
c12 ¼ LSFð

P4
j¼1LSFðf

j
IIÞ � dÞ

shH;V;Dðw0
2;w

0
3;w

0
4Þw0

i (i = 2,3,4)
ere
shH;V;Dðw0

2;w
0
3;w

0
4Þ ¼ 1� LSFðis d þ is hv� dÞ

is d ¼ LSFð�c01 � c02 þ dÞ
c01 ¼ LSFð�fIÞ
c02 ¼ LSFð

P4
j¼1LSFðf

j
IIÞ � dÞ

is_hv = LSF(v + h � d)
h ¼ LSFðLSFð�f 1

IIIÞ 	 LSFðf 2
IIIÞ � dÞ

v ¼ LSFðLSFð�f 1
IVÞ 	 LSFðf 2

IVÞ � dÞ
, f j

II, f
1
III, f

2
III, f

1
IV, f

2
IV: defined in Box 1.)
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3.5. Remark on the translation-invariant issue

Although the pattern recognition with wavelet variables is very effective, the direct application of the
shrinkage method described in the previous section may fail to detect all patterns to be eliminated. This
is because the wavelet basis at a given scale is constructed only by the 2n translations of one wavelet in
the horizontal, vertical and diagonal directions. This problem arises from the translation-variant property
of the wavelet basis. To overcome this, Yoon et al. (2004) have developed a method to detect all unwanted
patterns, which is called the non-redundant translation-invariant wavelet shrinkage method. Since the
translation-invariant method and the algorithm implementation by Yoon et al. (2004) are equally applica-
ble to the hierarchical wavelet shrinkage developed here, the detailed account of the method will not be
repeated. To emphasize the translation-invariant property, we will denote the non-redundant transla-
tion-invariant version of S by S. Therefore, Eqs. (28)–(30) should be replaced as
CT1 : R ¼ S
0

DW ð41Þ

CT2 : R ¼ S
0

D;H;VS
1

DW ð42Þ

CT4 : R ¼ S
0

D;H;VS
1

D;H;VS
2

DW ð43Þ
4. Case studies

Two topology optimization problems were studied in this section: the design of thermal actuators and
the design of electro-thermal-compliant actuators where the minimum thickness control at various scale
levels was taken into account. The method of moving asymptotes by Svanberg (1987) was used as a gradi-
ent-based optimizer for all numerical problems.

4.1. Thermal actuator design with minimum thickness control

The objective of this design problem is to find an optimal layout that maximizes the displacement at A
under a uniform temperature rise by DT on three shaded boundaries:
maximize U ¼ UA

subject to H ¼
XNE
e¼1

qeve �M0 6 0 ð44Þ
For future use, a simple conceptual actuator configuration is also given in Fig. 18(b). The optimized
thermal actuators that are obtained by the developed hierarchical wavelet shrinkage topology optimization
are shown in Fig. 19. Due to the symmetry, only half of the design domain is discretized by 8192 four-node
finite elements. The layouts in Fig. 19(b)–(d) were obtained by employing the shrinkage operations in Eqs.
(41)–(43), each of which imposes the minimum connection thickness at CT1, CT2, or CT4.

The results in Fig. 19 indicate that the developed hierarchical wavelet shrinkage successfully gives the
layouts having the desired minimum connection sizes. Interestingly, an optimized result almost similar
to the one shown in Fig. 18(b) was obtained when the minimum connection was imposed at CT4. The opti-
mized designs in Fig. 19 suggest that the developed method is capable of controlling the minimum thickness
at a desired scale level. It is also shown that as n of CTn becomes larger, the value of UA reduces. This
behavior agrees well with our physical intuition. The appearance of some isolated parts seen in Fig.



Fig. 18. (a) The problem definition for the design problem of thermal actuators (ks = 80 N/mm, mass constraint = 25%, Young�s
modulus = 200 GPa, Poisson�s ratio = 0.31, depth = 15 lm, DT = 500 K, thermal expansion coefficient = 15 · 10�6 K�1) and (b) a
conceptual thermal actuator.

Fig. 19. The optimized layouts of thermal actuators (no postprocessing used). (a) No minimum connection size control
(UA = 3.25 lm), (b) the minimum connection imposed at CT1 (UA = 2.92 lm), (c) CT2 (UA = 2.19 lm), (d) CT4 (UA = 1.89 lm).
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19(c) and (d) is due to the periodic condition used for the wavelet transformation. Similar problems were
also observed when the wavelet based method was used to control the topological complexity of an opti-
mized result by the topology optimization method (Seo and Kim, 2005).

4.2. Electro-thermal-compliant actuator design with minimum thickness control

As the second design problem, the topology design optimization of a microelectro-thermal-compliant
actuator was considered. This problem was worked out by Sigmund (2001), but the minimum connection
size control at CT2 or CT4 has not been yet solved in the existing investigations. The design problem is



Fig. 20. (a) The problem definition for the design of an electro-thermal-compliant actuator (ks = 100 N/m, Mass constraint = 30%,
Young�s modulus = 200 GPa, Poisson�s ratio = 0.31, depth = 15 lm, the electric conductivity = 6.4 · 106 K(X m)�1, the thermal
conductivity = 90.7 W/(K m), the convection coefficient = 18.7 · 103 W/(m2 K), thermal expansion coefficient = 15 · 10�6 K�1,
applied voltage = 0.3 V) and (b) a conceptual design. (This design was used by Que et al. (2001) and Wang et al. (2003).)
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described in Fig. 20(a). The objective of this design problem is to find an optimal layout to maximize the
displacement output at A under a given voltage input on the shaded boundaries to the system (see Sigmund
(2001), Ananthasuresh et al. (1994), Yin and Ananthasuresh (2002) for the problem formulation):
maximize U ¼ UA

subject to H ¼
XNE
e¼1

qeve �M0 6 0 ð45Þ
To solve Eq. (45), coupled electric, thermal, and structural analyses were conducted. In this work, the
structure was assumed to behave linearly and displacement-based four-node finite elements were used
for the discretization of the design domain.

As in the previous example, we also considered a simple, conceptual electro-thermal-compliant actuator
in Fig. 20(b). The actuator design in Fig. 20(b) has been used in the MEMS community (see, e.g., Que et al.,
2001; Wang et al., 2003). If the developed hierarchical wavelet shrinkage method works, it should also be
able to produce a layout like this one.

The optimized layouts with the control of minimum connection size at various scale levels are plotted in
Fig. 21. When the minimum thickness was set as CT1, small-sized cooling ribs were formed in the regions
where cooling can improve system performance. This phenomenon was also pointed out by Sigmund
(2001). As the minimum connection size became larger, however, the small-sized ribs were forced to disap-
pear, as can be seen in Fig. 21(c) and (d). When the minimum connection was imposed to be at CT4, in
particular, the actuator looked like a thick curved beam, which is almost identical to the one shown in
Fig. 20(b).

The optimized result in Fig. 21(c) may be considered by a designer as a good design candidate because
the system performance and the failure resistance appear to be balanced. To compare the overall system



Fig. 21. The optimized result for the electro-thermal-compliant actuator design. (a) No minimum connection size control
(UA = 13.92 lm), the minimum connection imposed at (b) CT1 (UA = 6.49 lm), (c) CT2 (UA = 4.97 lm), (d) CT4 (UA = 1.23 lm)
which is similar to the conceptual design by Que et al. (2001) and Wang et al. (2003).
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performance of the result in Fig. 21(a) and that of the result in Fig. 21(c), the minimum thickness of the
result in Fig. 21(a) is made (manually post-processed) to be the same as that of the result in Fig. 21(c).
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The actual design models derived from Fig. 21(a) and (c) are shown by Fig. 22(a) and (b), respectively. For
the same input voltage, the output tip displacement, the maximum Von-Mises stress, etc. are compared in
Table 1.
Fig. 22. The design models derived from in Fig. 21. (a) Postprocessed design of the optimized result in Fig. 21(a) to ensure that the
minimum thickness is not smaller than 12 lm, (b) from Fig. 21(c).

Table 1
Performance comparison of two designs (for the same voltage input, the same minimum thickness)

Model Fig. 23(a) Fig. 23(b)

UA 5.51 lm 5.72 lm
Max Von-Mises stress 1.02 · 1010 [N/m2] 2.18 · 109 [N/m2]
Max temperature 673 K 640 K

Fig. 23. A fabricated prototype of the design model in Fig. 22(b).
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Table 1 shows that the overall structural performance of the design in Fig. 22(b) is superior to that of the
design in Fig. 22(a). These results confirm the importance of the minimum thickness control in improving
the overall system performance. Based on the design in Fig. 22(b), a prototype shown in Fig. 23 has been
fabricated. An extensive experimental investigation on the system performance of the actuator in Fig. 23
should be conducted, but preliminary experimental tests indicated the usefulness of the proposed minimum
thickness controlled topology optimization strategy to reduce failures during fabrication operation stage.
5. Conclusions

In this paper, the minimum thickness control, which is one of the most difficult problems in topology
optimization, was studied. A design restriction method called the hierarchical wavelet shrinkage method
was developed to control topologically-optimized layouts at a desired minimum thickness scale. To facili-
tate the minimum thickness control, the topology optimization was carried out in the wavelet design space.
Especially when the desired minimum scale is larger than the size of the finite elements used for design do-
main discretization, the wavelet-shrinkage method should be applied hierarchically. Thus, the implementa-
tion strategies of the hierarchical wavelet shrinkage method were developed and applied to a couple of
MEMS design problems. Although the suggested method involves somewhat complicated procedures, it
produced useful results for the problems considered. The numerical results confirmed the importance of
the minimum thickness control during the optimization process. Indeed, the optimized design by the devel-
oped controlling method outperformed that of the post-thickened design.
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